Therapeutic approaches to aging

Laura Niedernhofer, M.D., Ph.D. Director, Institute on the Biology of Aging and Metabolism Medical Discovery Team Biology of Aging Professor of Biochemistry, Molecular Biology and Biophysics

UNIVERSITY OF MINNESOTA

UMN Institute on the Biology of Aging and Metabolism

Paul Robbins

Senescence Drug development

Christina Camell

Inflammasome Immunology

Xiao Dong

Somatic mutations Single cell; Bioinformatics

Matt Gill

C elegans

Lei Zhang

Epigenetics Single cell; Comparative biology

OFFICE OF ACADEMIC CLINICAL AFFAIRS

UNIVERSITY OF MINNESOTA Driven to Discover*

iBAM Mission

To improve the health, and thereby the quality of life, for the elderly in the state of Minnesota and beyond, through:

- discovery of fundamental mechanisms that drive aging, the number one risk factor for the majority of debilitating chronic diseases.
- drug development targeting these fundamental processes.
- augmenting emerging approaches to clinically test therapeutics aimed to extend health span of the elderly.
- educating the next generation of basic and clinical scientists dedicated to this mission.

The number of older adults in MN will double by 2035

Population age 65 years and older, Minnesota

Older adults will soon outnumber minors in the USA

Why is this happening? A biomedical success story

Jay Olshansky 2018 JAMA

Exponential increase in disease incidence in people over 60

- osteoporosis
- cardiovascular disease
- neurodegenerative diseases
- osteoarthritis
- type II diabetes
- cancer
- macular degeneration
- intervertebral disc degeneration
- hearing loss

Most older adults have >1 disease

Many chronic diseases (or their treatment) can accelerate aging

Xeroderma **Pigmentosum**: A Model for Human Premature **Aging**.

Rizza ERH, DiGiovanna JJ, Khan SG, Tamura D, Jeskey JD, Kraemer KH. J Invest Dermatol. 2021 Apr;141(4S):976-984. doi: 10.1016/j.jid.2020.11.012. Epub 2021 Jan 9.

> **Fanconi Anemia**: A DNA repair disorder characterized by **accelerated** decline of the hematopoietic stem cell compartment and other features of **aging**. Brosh RM Jr, Bellani M, Liu Y, Seidman MM. Ageing Res Rev. 2017 Jan;33:67-75. doi: 10.1016/j.arr.2016.05.005. Epub 2016 May 17.

Premature aging in childhood cancer survivors.

Kruseova J, Zichova A, Eckschlager T. Oncol Lett. 2022 Dec 13;25(2):43. doi: 10.3892/ol.2022.13629. eCollection 2023 Feb.

> Cellular Senescence in **Diabetes Mellitus**: Distinct Senotherapeutic Strategies for Adipose Tissue and Pancreatic β Cells. Murakami T, Inagaki N, Kondoh H. Front Endocrinol (Lausanne). 2022 Mar 31;13:869414. doi: 10.3389/fendo.2022.869414. eCollection 2022.

Cellular Senescence in **Obesity** and Associated Complications: a New Therapeutic Target.

Narasimhan A, Flores RR, Camell CD, Bernlohr DA, Robbins PD, Niedernhofer LJ.

Curr Diab Rep. 2022 Nov;22(11):537-548. doi: 10.1007/s11892-022-01493-w. Epub 2022 Oct 14.

Donor cord blood aging accelerates in recipients after transplantation.

Onizuka M, Imanishi T, Harada K, Aoyama Y, Amaki J, Toyosaki M, Machida S, Kikkawa E, Yamada S, Nakabayashi K, Hata K, Higashimoto K, Soejima H, Ando K. Sci Rep. 2023 Feb 14;13(1):2603. doi: 10.1038/s41598-023-29912-2.

Chronologic age is the greatest risk factor for heart disease (x 1000)

Geroscience Hypothesis: Treat aging biology

- + prevent, delay or ameliorate multiple debilitating, chronic degenerative diseases
- + avoid spending the rest of your life with "ologists"
- + avoid polypharmacy
- + reduce healthcare costs

Goal:

increase healthspan, not lifespan

Impact on an individual's trajectory

Impact on a population's trajectory

Bannister et al., 2014 Diabetes, Obes, Metab

Centenarians: evidence that healthy longevity is possible

Metformin: evidence it's pharmacologically possible to stave off multiple diseases with 1 pill

Bannister et al., 2014 Diabetes, Obes, Metab

What about aging biology can we therapeutically target?

Lopez-Otin et al 2023 Cell

What are senescent cells?

Annual Rev Pharm Toxicol 2020

Senescent cells are pro-inflammatory

Senescent cells play a causal role in aging

Baker et al, 2011. Nature

Baker et al, 2016. Nature

p16^{INK4a} expression in peripheral CD3⁺ cells is a marker of biological age

Aging Cell 8(4): 439-448 July 2009

Development of drugs targeting senescent cells

Drug screening

Senescent cells

Drug screening

High throughput imaging

Preclinical testing

Clinical trials

OFFICE OF ACADEMIC CLINICAL AFFAIRS

UNIVERSITY OF MINNESOTA Driven to Discover*

Fluorescence-based assay to screen for senolytic drugs

number of nuclei / field = **# viable cells** number of fluorescent cells = # senescent cells

Aging Cell 2015 Aging Cell 2016 Nat Comm 2017 Lab News 2016 Nat Comm 2017 Redox Biol 2018 PLOS Biol 2018 Aging 2017 J Amer Ger Soc 2017 Nat Rev Drug Disc 2018

Ercc1^{-/∆} mouse model of XFE progeroid syndrome

cerebral atrophy with cognitive decline
loss of vision and hearing
pulmonary fibrosis
heart failure
hepatic fibrosis
intervertebral disc degeneration
chronic kidney disease
osteoporosis
loss of subcutaneous fat
urinary incontinence
fatty replacement of the bone marrow
sarcopenia

peripheral neuropathy

Senotherapeutics

Natural product

Senomorphic

	Cancer therapy	First-generation senolytics: hypothesis-driven, mechanism-based disc			
	Senolytic -	Agent			
		Dasatinib 🔴			
		Quercetin		-	
		Fisetin		-	
		Luteolin			
		Curcumin 🔀			
		Curcumin analog EF24		2015 14(4)·644	
		Navitoclax (ABT263)		2010 14(4).044 Nature Rev Drug Discovery 2018 17(5):377	
		A1331852			
		A1155463	\checkmark		
		Geldanamycin, tanespimycin, alvespimycin, and other HSP90 inhibitors	\checkmark		
		Piperlongumine			
		FOXO4-related peptide	- <i>Uell</i> - 2010 170//\\813		
		Nutlin3a [although Nutlin. can also cause senescence (87)]		_ 2019 179(4).013	
		Cardiac glycosides such as ouabar proscillaridin A, and digoxin		Annual Rev	
		in 🔀		Pharmacol	
		Second-generation senolytics: traditional and other drug discovery me	ethods	Toxicol 2020 — JNCI 2021	
		Method			
		High-throughput compound library screens			
		Vaccines			
		Toxin-loaded nanoparticles preferentially lysed by Sncs			
	-	Immunomodulators			
		Cell-based therapies			

Senolytics improve physical function when administered in old age

Xu et al., Nat. Med., 2018

How senolytics are envisioned to work

Diseases in which senolytics work (in mice)

- Neuromuscular dysfunction
- Tauopathy (Alzheimer's disease)
- Pulmonary fibrosis
- AV fistulae
- Steatosis
- Hepatic fibrosis
- > Osteoporosis
- Osteoarthritis
- Atherosclerosis
- Kidney disease
- Cardiovascular disease
- Frailty
- > COVID-19

Senolytics first described

First clinical trial

18

>40 clinical trials

SenNet Consortium

https://sennetconsortium.org/

https://www.gerosciencenetwork.org/

https://www.gerosciencenetwork.org/

FDA-approved drugs that could be repurposed as Gerotherapeutics

Drug	Organs affected in humans	Affects in humans	Organs affected in mice	Affects in preclinical models	Hallmark of aging impacted
SGLT2i	Pancreas CV Renal	Healthspan Lifespan	CV Pancreas Liver, Renal	Lifespan (Healthspan)	Mitochondria Autophagy Metabolism
Metformin	Pancreas Liver CV, CNS	Healthspan Lifespan	Bone/cartilage CNS Muscle	(Lifespan) Healthspan	ROS, DNA damage, Mitochondria, Autophagy Inflammation, Senescence, Metabolism, Stem cell
Acarbose	Pancreas CV	Healthspan	CNS Renal Pancreas CV	Lifespan Healthspan	Inflammation Metabolism
Rapamycin	Immune	(Healthspan)	CNS, Eye, CV, Liver ♀ Reproductive Muscle	Lifespan Healthspan	ROS, DNA damage, Autophagy Inflammation, Senescence, Metabolism Stem cell
Methylene blue	CV	Healthspan	CNS	Lifespan (Healthspan)	ROS Mitochondria Senescence
ACEi & ARBs	Pancreas, CV, Renal CNS, Pulmonary Bone, Muscle	Healthspan Lifespan	Muscle CV	Lifespan Healthspan	Autophagy ROS
Fisetin or D+Q	Pulmonary Renal Muscle	n/a	CNS, Muscle, Bone, CV Pulmonary, ♀ Reproductive Liver, Pancreas	Lifespan Healthspan	Senescence Inflammation Metabolism Stem cell
Aspirin		n/a	CNS CV	Lifespan Healthspan	ROS, DNA damage, Autophagy Inflammation, Senescence, Metabolism, Epigenetics
N-acetyl- cysteine		n/a	CNS	(Lifespan) (Healthspan)	ROS

Longevity Landscape

Commercial:	Altos Cambrian Juvenescence Life Biosciences Elysium Unity Biologics
Granting organizations:	AFAR
	Astera Institute
	VitaDAO
Social catalysts:	The Academy for Healthspan and Lifespan Research Ondeck Longevity Fellowships Beyond Aging SENS A4LI
Mega Foundations:	The Milkyway Foundation
Industry vehicles:	Longevity Science Foundation Longevity Biotechnology Association The Alliance for Longevity Initiatives

Congress of the United States House of Representatives

COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY

2321 RAYBURN HOUSE OFFICE BUILDING

WASHINGTON, DC 20515-6301

(202) 225-6375 www.science.house.gov

No, we won't defeat aging!

However, by studying aging, we hope to postpone disease, frailty, and disability

Niedernhofer Lab

Linshan Shang Ph.D.

Ph.D.

Soto-Palma, Ph.D.

Chathurika Henpita, Ph.D.

Akilavalli Narasimhan, Ph.D.

Beth Thompson Ph.D.

Sara McGowan B.S.

Peter Gullikson B.S.

Luise Angelini Ryan O'Kelly B.S. B.A.

Mackenzie Plummer B.S.

Vicky Usina B.S.

Mickayla DuFresne-To B.S.

Hector Martell Sam Peters Martinez, B.S. B.S.

Josh Carey Joe Robin B.S. B.S.

Tra Kieu Grad student Grad student

Rahagir Salekeen Grad student

Karah Shirley undergrad

Caeden Windschitl undergrad

Alexa Soto undergrad

Mehek Jahan B.S.

Funding

